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Methods for hyperbolic systems with sti� relaxation
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SUMMARY

Three methods are analysed for solving a linear hyperbolic system that contains sti� relaxation. We
show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the
relaxation time is unresolved (asymptotic preserving—AP). The two other methods are shown to be
non-AP. To discriminate between AP and non-AP methods, we argue that in the limit of small relaxation
time, one should �x the dimensionless parameters that characterize the near-equilibrium limit. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hyperbolic systems with sti� relaxation terms remain a challenge for numerical methods
[1–3]. We are interested in the subset of such systems that have a Chapman–Enskog behaviour,
such as models for multiphase �ow, rare�ed gas dynamics, and radiation hydrodynamics. In
an e�ort to better understand the behaviour of numerical methods for these systems, this study
will focus on a simple model problem [2, 4]:

@t̃ ũ+ @x̃ṽ=0 (1a)

@t̃ ṽ+ c
2
f@x̃ũ=(ceũ− ṽ)=� (1b)

where �¿0, c2f¿c
2
e , and the notation ˜(·) is used to emphasize that a variable is dimensional.

We seek numerical methods for (1) that are accurate for all values of �. Of particular di�culty
is whenever � is small, where many methods require unreasonable mesh resolution in order to
obtain accurate solutions. A Chapman–Enskog expansion for small � shows that the long-time,
asymptotic behaviour of ũ(x̃; t̃) is described by an advection–di�usion equation:

@t̃ ũ+ ce@x̃ũ− �(c2f − c2e )@2x̃ ũ=0 (2)
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414 R. B. LOWRIE AND J. E. MOREL

The main purpose of this study is to de�ne the manner in which a numerical method for (1)
should share this same asymptotic behaviour. The analogy here with gas kinetics is that the
system (1) corresponds to a Boltzmann closure, �cf to the mean-free-path, and Equation (2)
to the Navier–Stokes equations.
Once the initial condition and suitable boundary conditions have been speci�ed, the solu-

tion of system (1) is characterized by two independent dimensionless parameters. Following
Reference [1], in this study we use

r= ce=cf and �= �cf=L (3)

where L is the length scale of interest. On the other hand, solutions to (2) are characterized
by a single parameter, the Peclet number, given by

Pe=
ceL

�(c2f − c2e )
=

r
�(1− r2) (4)

We contend that if conditions are such that (2) holds, then a numerical method for (1) should
only have to resolve the length and time scales corresponding to (2). In other words, if �� 1
and the solution is near equilibrium, then the accuracy of a method should only depend on the
resolution of scales related to Pe, and not necessarily require resolution of scales corresponding
to either r or �. We refer to such methods as asymptotic preserving (AP), a term borrowed
from [5].
In terms of a characteristic mesh spacing �x̃ and with �� 1, let the degree of mesh

resolution be measured as

h ≡ �x̃=L=O(�p) (5)

Assume that �x̃ is no larger than the length scale of interest, so that the minimum p is 0. In
this study, we also restrict p to integer values. At a minimum, there are three regimes that
must be considered when analysing a method [6]:

1. Unresolved regime: p=0. By ‘unresolved’ we refer only to the time and length scales
related to �; note that �x̃=(cf�)=O(�−1). Referred to as the ‘thick regime’ in Refer-
ence [6].

2. Intermediate regime: p=1, so that �x̃=(cf�)=O(1).
3. Resolved regime: p¿2. In this case, the mesh resolves the relaxation scales and �x̃=(cf�)
=O(�p−1). Referred to as the thin regime in Reference [6].

We may now de�ne an AP method more concretely. Consider the following non-
dimensionalization:

x= x̃=L; t= t̃=t̃ref ; v= ṽ=ṽref ; u= ũ=ũref (6)

where t̃ref , ṽref , and ũref are constants to be speci�ed later. Expand z ∈ {u; v} as
z(x; t)= z(0)(x; t) + �z(1)(x; t) +O(�2) (7)

For small �, we choose (6) such that the leading order solution satis�es

@tu(0) + @xu(0) − 1
Pe
@2x u

(0) = 0 (8)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:413–423



METHODS FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION 415

which is a dimensionless version of (2). We de�ne an AP method as a consistent discretiza-
tion of (1), such that for all p¿0 and small �, the discretization for u(0)(x; t) is consistent
with (8).
We stress that our scaling is such that both the advection and di�usion terms appear in the

leading order solution. Similar asymptotic arguments, along with an approach to solve e�-
ciently the sti�ness arising when cf and ce are disparate, are covered by Naldi and Pareschi [7].
The ability to predict accurate di�usion, and not just advection, is critical if a method for (1)
is to be accurate for all values of � and r. On the other hand, we hesitate to refer to an AP
method as ‘uniformly accurate’ [8]. In our opinion, uniform accuracy should imply accuracy
under every conceivable asymptotic behaviour, a claim we are not ready to make.
The AP concept extends to more complicated systems. For gas kinetics, if the Knudsen

number is small such that the Navier–Stokes equations hold, then an AP discretization of
the Boltzmann equation will require resolution of only the scales of interest corresponding
to the Navier–Stokes equations. Speci�cally, an AP method allows the mean-free path to be
unresolved, unless that is the length scale of interest (such as in a shock transition layer).
Following Reference [4], a useful analysis technique is to study the asymptotics of the

modi�ed (or ‘equivalent’) equation for (1). The asymptotic analysis yields what we refer to
as the asymptotic modi�ed equation, which for our model problem takes the form

@tu+ @xu− 1
Pe
@2x u=TE(u; �; r; h) (9)

where TE(u; �; r; h) is de�ned as the asymptotic truncation error. All of the methods in this
study satisfy TE=O(h2), but may be non-AP as a result of O(h3) terms. When deriving (9)
for a particular method, we will assume that h is small enough to resolve the variation in the
unknowns and that the solution is regular enough that a Taylor series is valid. However, we
stress that � may be unresolved by the mesh.
We will not review the modi�ed equation or asymptotic analyses here, as both techniques

are very well known [4, 6, 7]. To keep this report concise, we will also typically omit the steps
in deriving (9) for each method. Boundary and initial conditions should also be considered,
but we leave this analysis for future work.
This study analyses two semi-discrete methods and one fully discrete method. In the re-

solved regime, standard error analyses apply, and each method is second-order accurate for
smooth data. For the semi-discrete methods, we do not analyse any particular time integrator,
and demonstrate that it is the spatial operator that dominates the asymptotic behaviour. We
actually prefer fully discrete methods, but have concentrated on semi-discrete methods because
it emphasizes that the di�culties arise independent of the time integration scheme [4, 7]. On
the other hand, the spatial operator from a non-AP semi-discrete method, when used with a
clever choice of predictor step(s), may result in an AP method [8]. We leave the investigation
of such methods for future work.

2. ACCURACY OF METHODS FOR ce=0

Methods may be eliminated from consideration by �rst studying the ce=0 case. This special
case simpli�es the analysis considerably and elucidates why certain methods fail. In the scaling
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(6), we set

t̃ref =L=(�cf); ṽref = �cfũref ; ũref =O(1) (10)

System (1) then reduces to

@tu+ @xv=0 (11a)

@tv+
1
�2
@xu=− 1

�2
v (11b)

If we substitute (7) and collect the O(�0) terms, then we �nd

@tu(0) − @2x u(0) = 0 (12)

The motivation for scaling (10) is now apparent, so that the leading-order asymptotic solution
is the heat equation. Naldi and Pareschi [7] refer to this particular scaling as di�usive. To
leading order, the discretization of an AP method for (11) must be consistent with (12).
The Fourier transform solution of (12) shows that data of wave number k is damped as

exp(−dt), where d is the damping rate, given by d=4�2k2. Let dh be the damping rate for
a particular numerical method. In order to measure the performance of a method, we de�ne

N≡ mesh cells
wavelength

required for
∣∣∣∣dhd − 1

∣∣∣∣ =0:01 (13)

An AP method for (11) satis�es N =O(�0) if �� 1. After all, any discretization of (12) yields
an N that is independent of �.

2.1. A high-resolution Godunov method (HR)

In this section, we give an example of a non-AP method whose asymptotic behaviour was
�rst analysed in Reference [4]. Consider a semi-discrete, high-resolution Godunov method that
uses a central-di�erence slope reconstruction [9]. A slope limiter may also be applied, but is
not needed for the purpose of this study. We use the ‘frozen’ Riemann problem (RP) for the
�ux solver, by which we mean that we do not account for e�ects of the source term in (1)
when computing the interface �ux.
The HR method for system (11) has modi�ed equations given by

@tu+ @xv=
1
12
h2@3x v−

1
8
h3

�
@4x u+O(h

4) (14a)

@tv+
1
�2
@xu+

1
�2
v=

1
12
h2

�2
@3x u−

1
8
h3

�
@4x v+O(h

4) (14b)

Consider the unresolved regime, h=O(1). If we substitute (7) into (14a) and compare equal
powers in �, we obtain

1
8h
3@4x u

(0) =O(h4) (15a)

@tu(0) + @xv(0) = 1
12h

2@3x v
(0) − 1

8h
3@4x u

(1) +O(h4) (15b)
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while (14b) yields

v(0) =−@xu(0) + 1
12h

2@3x u
(0) +O(h4) (15c)

We see that HR is non-AP, because (15a) is inconsistent with (12).
By substituting (15c) into (15b), it is apparent that the asymptotic behaviour is equivalent

to that of

@tu− @2x u= −
(
1
6
h2 +

1
8
h3

�

)
@4x u+O(�; h

4) (16)

which is this method’s asymptotic modi�ed equation. This same equation also holds in the
intermediate and resolved regimes.
If the mesh is �ne enough such that h3� �, then second-order accuracy is recovered. To

get an idea of the mesh requirements, the damping rate for (16) is given by

dh=4�2k2 + 2�4k4h2
(
h
�
+
4
3

)
(17)

A good estimate for N may be obtained by ignoring the h2 term (such as in Reference [4]).
Using the fact that h=1=(kN ), we obtain

N =
(
50�2

�k

)1=3
(18)

Choosing k=2 and �=10−5 requires N =292 cells=wavelength to resolve the damping rate
to within 1%.
Increasing the spatial order of accuracy may lower the exponent in (18), but we suspect

that the resulting method will be non-AP. Note that we have shown previously that for steady
linear transport, the HR method with any slope reconstruction that is independent of the
source term is non-AP [9]. Another option is to replace the frozen RP by the generalized RP,
which accounts for the source term when computing the �ux [1]. However, the generalized
RP reduces to the frozen RP as � t̃=� → 0, and therefore the analysis above holds in this
limit. There are other �xes proposed in References [4, 7] which should also be considered,
but are beyond the scope of this study.

2.2. Liotta, Romano, and Russo method (LRR)

The LRR method is a central scheme (extended Nessyahu and Tadmor) that is derived in
Reference [2]. This method uses a uniformly non-oscillatory (UNO) procedure to compute
certain derivatives; the analysis here holds for the UNO method and also any other second-
order approximation. The asymptotic modi�ed equation for the LRR method is given by

@tu− @2x u=
(
5
24
h2 − 3

128
h3

��

)
@4x u+O(�; h

4) (19)

where �= cf� t̃=�x̃ and �¡1=2 for stability. Just as with the HR method, the O(h3) term
results in a non-AP method. Note that Reference [2, end of Section 5.1] drops O(h3) terms
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in their analysis. From Equation (19), a good estimate for N is

N =
(
75�2

8��k

)1=3
(20)

For k=2, �=10−5, and �=1=2 we obtain N =210 cells=wavelength, which is an improvement
over the HR method. However, because of N ’s dependence on �, in the unresolved regime
the LRR method is less accurate than the HR method when �/ 3=16.

2.3. Discontinuous Galerkin (DG)

In this section, we analyse a semi-discrete DG method. Within each cell j, the solution is
approximated using a linear basis:

u(x)= (1− �)u1 + �u2; �=(x − xj−1=2)=h (21)

where u=(u; v)T and (u1,u2) are computed in each cell. For a linear system, DG in cell j
may then be written as

@tu1 +
1
h
[−4fj−1=2 − 2fj+1=2 + 3f(u1) + 3f(u2)]= s(u1) (22)

@tu2 +
1
h
[4fj+1=2 + 2fj−1=2 − 3f(u1)− 3f(u2)]= s(u2) (23)

where s(u) is the source term, f(u)= (v; u)T, and the interface �ux fj+1=2 is computed via
the frozen Riemann problem. More information on this particular DG implementation may be
found in References [10, 11].
The asymptotic modi�ed equation for DG is given by

@tu− @2x u=− 1
12h

2@4x u+O(�; h
4) (24)

which yields N =10�=
√
3 ≈ 19 cells=wavelength, independent of �. In all regimes, this equa-

tion’s leading-order asymptotic behaviour is consistent with (12), and therefore, at least to
O(h4) and ce=0, semi-discrete DG is AP. A disadvantage of DG is that it requires twice as
many unknowns per cell as the other methods in this study.

2.4. Numerical results for ce=0

In this section, we demonstrate that the truncation error estimates above are in good agree-
ment with numerical results. For the semi-discrete methods, we use a predictor–corrector time
integrator. The predictor may be written as

un+1=2 − un
�t=2

=D(un) + S(un+1=2) (25)

where the operator D corresponds to di�erential terms and S corresponds to the source term.
For the corrector, we used a lumped-linear DG method for the source term, which requires
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Table I. Results for ce =0, �=10−5, u(x; 0)= cos(2�x), v(x; 0)= 0, periodic domain, �nal time
is t=0:01. L2(u) is the measured error, from which the order of accuracy is computed on
successive meshes. LT:E:2 (u) is an analytical estimate from the truncation error. Note that the

fully damped solution u=0 corresponds to L2(u)= 0:4765:

Method Cells=wavelength LT:E:2 (u) L2(u) Order

HR(�=0:8) 10 4.765e-01 4.765e-01 —
20 4.765e-01 4.765e-01 0.00
40 4.538e-01 4.535e-01 0.07
80 1.509e-01 1.506e-01 1.59

LRR(�=0:4) 10 4.765e-01 4.765e-01 —
20 4.765e-01 4.765e-01 0.00
40 3.619e-01 3.615e-01 0.40
80 7.763e-02 7.760e-02 2.22

DG(�=0:3) 10 6.342e-03 6.821e-03 —
20 1.557e-03 1.587e-03 2.10
40 3.874e-04 3.887e-04 2.03
80 9.673e-05 9.653e-05 2.01

solving the following coupled system:

(un+1 + u∗)=2− un
�t=2

=D(un+1=2) + S(u∗) (26a)

un+1 − (un+1 + u∗)=2
�t=2

=D(un+1=2) + S(un+1) (26b)

where u∗ is an intermediate state. This integrator is point-implicit, L-stable, has positive
ampli�cation for all �t, and is second-order accurate when � t̃=� is small.
Table I shows results from the three methods analysed above. For each method, we Fourier

transformed its asymptotic modi�ed equation in order to analytically estimate the error with
respect to the exact solution of the heat equation. This estimate is denoted as LT:E:2 (u). Also
tabulated is L2(u), which is the measured error in u from the numerical simulation with respect
to the exact solution of (1). The values of LT:E:2 (u) and L2(u) are in good agreement for all
of the methods, which is a good indicator that our analysis and code implementation are
correct. It also shows that the time integrator did not signi�cantly a�ect the analysis results
for the semi-discrete methods. The order of accuracy is computed from L2(u). DG shows
second-order accuracy, while the other methods do not show second-order convergence until
the exact solution is over-resolved.

3. ACCURACY FOR ce �= 0

In this section, we show the sense in which DG retains the AP property for ce �= 0. We use
the scaling

t̃ref =L=ce; ṽref = ceũref ; ũref =O(1) (27)
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so that system (1) becomes

@tu+ @xv=0 (28a)

@tv+
1
r2
@xu=(u− v)=(r�) (28b)

Past work has typically assumed that r=O(1) in the limit of small �, so that instead of (8),
results in

@tu(0) + @xu(0) = 0 (29)

Another perspective is that independent of the choice of scaling,

lim
�→0
r �xed

Pe(r; �)=∞ (30)

Therefore, if � is very small (where numerical methods have di�culty), then holding r �xed
tests only the ability to compute the advection–dominated case. If one is interested in com-
puting solutions in only the inviscid regime (� ≡ 0), then �xing r as �→ 0 is valid. However,
if di�usive e�ects are of interest, or if a method is to be accurate for all � and r, then a more
appropriate test is to hold Pe �xed as �→ 0. One may then test the di�usion–dominated case
by choosing Pe small. No generality is lost, since one may select a large Pe in order to test
the advection–dominated case.
A �xed Pe implies that r=O(�), which changes the asymptotic analysis such that the

leading order solution is given by (8). This is another example of a di�usive scaling [7].
Another consequence of the scaling is that one may approximate Pe in (4) as r=�, but this
approximation is not required. In fact, we prefer the form in (4), because it guarantees that
|r|¡1 (bounded solutions) for any Pe¿0 and �¿0.
The asymptotic modi�ed equation for the HR method is given by

@tu+ @xu− 1
Pe
@2x u= − h2

12

(
2
Pe
@4x − @3x

)
u− 1

8
h3

r
@4x u +O(�; h4) (31)

while for DG, we obtain

@tu+ @xu− 1
Pe
@2x u= − 1

36Pe
(3h2@4x + 2rh

3@5x )u−
1
72
rh3@4x u +O(�; h4) (32)

Note that if we account for the scaling di�erences between (27) and (10), and set ce=0,
then (31) reduces to (16) and (32)–(24). The relations above hold for all mesh resolution
regimes and for r=O(1) or O(�).
The important di�erence between HR and DG is contained in the boxed terms of (31)

and (32). When r=O(1), the boxed terms are not a problem for either method and both are
second-order accurate. Keep in mind that

lim
Pe→∞
� �xed

r(Pe; �)= ± 1
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so that at a given � and large enough Pe, second-order accuracy will be observed for either
method.
But when r=O(�), we have that r= �Pe + O(�3), so the boxed term in (31) may be

approximated as

1
8Pe

h3

�
@4x u

As in the ce=0 case, it is then obvious that the term above will dominate the di�usive e�ects
when h3	 �. The above relation is the leading order solution when h=O(1), so that HR is
non-AP. A similar result may be derived for the LRR method.
In contrast to HR, the boxed term in (32) behaves as h3�. Therefore, DG maintains second-

order accuracy for all mesh regimes and is AP. Yet another argument is to compare (32) with
a second-order discretization of (2). A semi-discrete discretization of (2), using a central-
di�erence slope reconstruction, the upwind �ux solver, and a three-point central discretization
for the di�usion term has a modi�ed equation given by

@tu+ @xu− 1
Pe
@2x u=

1
12
h2@3x u−

1
12Pe

h2@4x u−
1
8
h3@4x u +O(h4) (33)

The boxed term here is similar to that as in Equation (32), but without the factor of r. But
because |r|¡1, DG has similar accuracy.
The analysis above strongly suggests that numerical tests should be run at a �xed Pe.

For small values of Pe, only DG should be second-order accurate, but for a given � and
large enough Pe, all of the methods in this study should be appear second-order. Figure 1
compares L2-errors from the DG and LRR methods for three values of the Peclet num-
ber. Each plot shows results that are roughly in the unresolved (�=10−5; 10−4; 10−3), in-
termediate (�=0:02), and resolved (�=105) regimes. The problem’s initial condition was
u(x; 0)= cos(2�x), v(x; 0)= u(x; 0), with periodic boundary conditions. The �nal time was
chosen so that the equilibrium wave propagates 1 wavelength. The DG method shows second-
order accuracy, independent of �. Both methods perform similarly in the intermediate and
resolved regimes, but the LRR method generally does poorly in the unresolved regime. As
predicted, if Pe is large enough, for a given � (roughly when Pe�=O(1)), second-order ac-
curacy is recovered by LRR in the unresolved regime. The results of the HR method (not
shown) are very similar to the those of LRR.

4. CONCLUSIONS

We have shown that semi-discrete DG is asymptotic preserving (AP) for a model problem. To
discriminate between AP and non-AP methods, we have argued that one should �x the Peclet
number in the limit of vanishing relaxation time. To extend this concept to more general
systems, in the limit of the relevant small parameter, one should �x whatever dimensionless
parameters characterize the near-equilibrium limit. In other work [10, 11], we have obtained
good results for DG for non-linear systems, such as for the Broadwell model of gas kinetics
and problems in radiation hydrodynamics. The failure of non-AP methods is often the result
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Figure 1. DG(�=0:3) and LRR(�=0:4) errors for various Peclet numbers.

of higher-order terms in h. Moreover, the terms that cause failure may be traced back to
the discretization and possibly remedied (e.g., see References [4, 7]). This analysis is left for
future work.
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